Kexec-hardboot patch - Nexus 7 Developer Discussion [Developers Only]

In this post, I would like to explain what kexec-hardboot patch is and also bring it to light a bit more since until now, it was only burried in MultiROM thread.
@kernel developers: I would like to ask you to merge this patch to your kernels, because it is essential part of MultiROM - it allows me to boot any kernel without changing the boot partition. I realize that it is no small request, but the patch is not big, touches relatively stable parts of kernel and should not cause any problems. Thank you.
What is kexec?
It is syscall of Linux kernel, which allows you to boot another Linux kernel without restarting the device - "Linux boots itself". The functionality is equivalent to fastboot -c *cmdline* boot zImage initrd.img, but without PC and fastboot. It is fairly known thing, so more info at wikipedia and man kexec.
Standard kexec call unfortunatelly does not work on Nexus 7. It freezes somewhere, and it is very difficult to find out where - probably some of the drivers are not shut down/re-initialized properly, it is a commong thing among Android devices, which is why kexec-hardboot was made.
What is the difference between normal and hardboot exec?
Kexec-hardboot patch adds a real device restart to that process, so that all the drivers can be properly reinitialized. It stores new kernel to RAM, reboots the device as usual, and kernel from boot partition immediately jumps to the one which was stored to RAM before reboot.
Another difference is that both kernels must be patched. The "host" kernel requires a full patch, the one which is being kexecd' requires only two small compatibility patches.
To sumarize the process:
kexec --load-hardboot.... is called and kernel it loaded into RAM.
kexec -e is called. Special info is written to memory (to area which is not overwritten on reboot) and the device is rebooted.
After reboot, very early in the boot process, kernel checks if that special info is present in RAM and if so, it loads new kernel from RAM and jumps to it.
Kexecd' kernel starts and boots.
For more info, read the original thread.
Patches:
Full kernel patch: https://gist.github.com/4558647, 4.1 kernel repo, cm 10.1 kernel repo
This is the full kernel patch. Kernels with this patch can be both "host" and "guest" kernels.
Related CONFIG options:
CONFIG_KEXEC=y
CONFIG_KEXEC_HARDBOOT=y
CONFIG_ATAGS_PROC=y
CONFIG_GROUPER_HARDBOOT_RECOVERY=n
First three options must be enabled. Last one, GROUPER_HARDBOOT_RECOVERY, specifies if the kexec call should reboot to normal mode or to recovery. This can be useful if you don't have the kernel in boot partition but only as kernel in recovery partition. You usualy want to disable this option.​
Compatibility patch: https://gist.github.com/4458581
This patch only makes the kernel bootable via kexec, ie. it can't be the host kernel. This was made for Ubuntu kernel (and it was accepted), because I did not want to drag the whole patch in there. If your kernel is for Android ROMs, you should use the full patch.​
Userspace kexec binary: View attachment kexec-tools.zip
That ZIP file contains kexec source, patches and README. It is from the original patch from Mike Kasick. It also contains precompiled, statically linked kexec binary, so you probably just want to use that.​
Usage:
Once you have the kernel patches and kexec userspace binary in place, just run following command to boot into new kernel:
Code:
kexec --load-hardboot zImage --initrd=initrd.img --mem-min=0x85000000 --command-line="$(cat /proc/cmdline)"
kexec -e
Note the command line parameter - cmdline from bootloader is not added automatically, you have to put it there by yourself.
Currently used by:
MultiROM - I use it to boot different kernels (eg. Ubuntu).
MOSLO - Part of Plasma Active for Nexus 7, also usefull tool for every N7 developer - read more: http://ruedigergad.com/2012/12/09/nexus-7-easily-flashaccess-entire-userdata-partition/
Authors:
This patch was made by Mike Kasick for Samsung Epic 4G. Since that, it was ported to several devices, one of them is Asus Transformer TF201 - I used patch from TF201 and modified it a bit (basically just changed few SoC specific constants). People at #ubuntu-arm helped me out with that, thanks.

Hi Tasssadar,
im trying to get this to work on the HOX in order to have a shot at multiboot,
the patched applied with no problem... however on compiling i gett this error
"Adress for kexec hardboot page not defined"
ask this error naturely defined to kick in with every device beside N7 i that comment completely....
and that ended up giving me an error about KEXEC_HB_PAGE_ADDR not defined,
so i readded it, but i removed the "#if defined(CONFIG_MACH_GROUPER)"
now trying to compile it, its gets pretty close to the end... but failed with unexpected string error at line OUTPUT_ARCH(arm) in file linux/arch/arm/boot/compressed/vmlinux.lds
Code:
/*
* linux/arch/arm/boot/compressed/vmlinux.lds.in
*
* Copyright (C) 2000 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
/DISCARD/ : {
*(.ARM.exidx*)
*(.ARM.extab*)
/*
* Discard any r/w data - this produces a link error if we have any,
* which is required for PIC decompression. Local data generates
* GOTOFF relocations, which prevents it being relocated independently
* of the text/got segments.
*/
*(.data)
}
. = 0;
_text = .;
.text : {
_start = .;
*(.start)
*(.text)
*(.text.*)
*(.fixup)
*(.gnu.warning)
*(.glue_7t)
*(.glue_7)
}
.rodata : {
*(.rodata)
*(.rodata.*)
}
.piggydata : {
*(.piggydata)
}
. = ALIGN(4);
_etext = .;
.got.plt : { *(.got.plt) }
_got_start = .;
.got : { *(.got) }
_got_end = .;
_edata = .;
. = ALIGN(8);
__bss_start = .;
.bss : { *(.bss) }
_end = .;
. = ALIGN(8); /* the stack must be 64-bit aligned */
.stack : { *(.stack) }
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
}
also, im booted into windows now... so i can't provide the exact error.

I'm afraid "comment everything which doesn't work" won't work here. The KEXEC_HB_PAGE_ADDR and END_MEM is device-specific, it will most likely be different for HTC One X. You can find out what address is it supposed to be by examining /proc/iomem on your device. For example, here's memory map from grouper:
Code:
...
80000000-be9fffff : System RAM
80008000-808faba7 : Kernel text
80940000-80b8228f : Kernel data
beb00000-bebfffff : ram_console
...
So, for grouper, END_MEM is 0xbe9fffff + 1 = 0xbea00000.
KEXEC_HB_PAGE_ADDR is located 1MB before console RAM, which is in this case also immediatelly after System RAM, so for grouper, it is also 0xbea00000.
but failed with unexpected string error at line OUTPUT_ARCH(arm) in file linux/arch/arm/boot/compressed/vmlinux.lds
Click to expand...
Click to collapse
That doesn't seem to be related to this patch. Are you using correct cross-compiler?

Tasssadar said:
I'm afraid "comment everything which doesn't work" won't work here. The KEXEC_HB_PAGE_ADDR and END_MEM is device-specific, it will most likely be different for HTC One X.
Click to expand...
Click to collapse
i figured
but im walking you through what i did.
You can find out what address is it supposed to be by examining /proc/iomem on your device. For example, here's memory map from grouper:
Code:
...
80000000-be9fffff : System RAM
80008000-808faba7 : Kernel text
80940000-80b8228f : Kernel data
beb00000-bebfffff : ram_console
...
So, for grouper, END_MEM is 0xbe9fffff + 1 = 0xbea00000.
KEXEC_HB_PAGE_ADDR is located 1MB before console RAM, which is in this case also immediatelly after System RAM, so for grouper, it is also 0xbea00000.
Click to expand...
Click to collapse
Code:
7d000000-7d003fff : tegra-udc.0
7d000000-7d003fff : tegra-otg
7d000000-7d003fff : tegra-udc
7d004000-7d007fff : tegra-ehci.1
80000000-beafffff : System RAM
80008000-8094000f : Kernel text
809a8000-810b940f : Kernel data
beb00000-bebfffff : ram_console
bec00000-beffffff : fbmem
bf000000-bf7fffff : fbmem
0xbeafffff + 1 = 0xbeb00000
grrr that would put me inside the ram_console...
aaaa would it wok if i used the address before??
7d00800
Edit:
or did your ram RAM end earlier because you set you END_MEM 0xbea00000
in that case, it works out just the same with the HOX
That doesn't seem to be related to this patch. Are you using correct cross-compiler?
Click to expand...
Click to collapse
i would have guessed so, but the kernel compiled and is working before the patch.
im using the one provided by google (Android NDK r9) while it contains booth gcc 4.6/4.8 im using 4.6 (arm-linux-androideabi-)

The patch will move ram_console 1MB further, see https://gist.github.com/Tasssadar/4558647#file-n7_hardboot-diff-L387 . You'll have to modify this part of the patch, it will be in different file for your device.

Tasssadar said:
The patch will move ram_console 1MB further, see https://gist.github.com/Tasssadar/4558647#file-n7_hardboot-diff-L387 . You'll have to modify this part of the patch, it will be in different file for your device.
Click to expand...
Click to collapse
HOX is also a Tegra 3 device... so im guessing i wont need to touch a thing?
also note... that iomem provided is from an unpatched kernel (as i cant compile a patched one)
also,
im currently on freenode #htc-one-x
if you dont mind joining.

I've been looking through the kexec-hardboot patch these last few days, trying to actually understand it instead of just blindly porting it and after several hours of messing with assembler with no means to debug it, I've managed to remove the need for guest kernel to be patched. This is not really useful for grouper, since thanks to multirom and accepting kernel devs, nearly every third-party kernel has the proper patches. But, if I'll port multirom to some other device (hello, flo), it will be very useful
To know more see the changes in this commit, but you'll probably need to understand how the patch does things: https://github.com/Tasssadar/androi...mmit/2ce4130061f72430a8ddfde25346c4e528c5c30b
@mkasick: Could you please look over this? I'm afraid there's some good reason why you didn't do this in the first place, like rewriting some part of memory which shouldn't be rewritten or something like that. Thank you.

Tasssadar said:
I've been looking through the kexec-hardboot patch these last few days, trying to actually understand it instead of just blindly porting it and after several hours of messing with assembler with no means to debug it, I've managed to remove the need for guest kernel to be patched. This is not really useful for grouper, since thanks to multirom and accepting kernel devs, nearly every third-party kernel has the proper patches. But, if I'll port multirom to some other device (hello, flo), it will be very useful
To know more see the changes in this commit, but you'll probably need to understand how the patch does things: https://github.com/Tasssadar/androi...mmit/2ce4130061f72430a8ddfde25346c4e528c5c30b
@mkasick: Could you please look over this? I'm afraid there's some good reason why you didn't do this in the first place, like rewriting some part of memory which shouldn't be rewritten or something like that. Thank you.
Click to expand...
Click to collapse
Perfect timing, just finished my last exam
Edit:
Also, this applies on top of the original patch right??
Edit2:
i can't seem to get it to kexec boot, but i didn't do much testing, maybe 2morrow night!
Edit3:
fixed, it was a problem with min-addr,
changed it to 0x82000000 and it worked

One more question...
TEGRA_PMC_BASE is also device specific, ain't it???
So, for a Qualcomm device, what should I be using? I am guessing it is MSM_RPM_BASE, which I got from here: http://forum.xda-developers.com/showpost.php?p=31127486&postcount=7

Yes, it is SoC-specific. This is using some special register to reset the chip, I'm not sure if that is available on msm chips - probably yes, but in some different form. Your best chance is to examine restart sequence in arch/arm/mach-msm/restart.c and port it to assembler.

Tasssadar said:
Usage:
Once you have the kernel patches and kexec userspace binary in place, just run following command to boot into new kernel:
Code:
kexec --load-hardboot zImage --initrd=initrd.img --mem-min=0xA0000000 --command-line="$(cat /proc/cmdline)"
kexec -e
Click to expand...
Click to collapse
The address of 0xA0000000 is not necessarily the best choice going forward. It originally made perfect sense, as it is well above everything else. But now that we can boot unpatched guest kernels, we can hit the interesting situation where the guest decompression may take a full minute. At least it's when I've seen on the Ouya game console that's running the next chip after Grouper.
When I realized what's going on, I changed to 0x8E000000, as it gets me just below the 256 MB limit of cache-enabled memory that's present on a typical guest at that early decompression stage. It's enough to hold a typical 8 MB boot image kernel/ramdisk. Now the guest kernel startup is fast in all cases.
Thank you Tasssadar for continuing your work in this area, especially with finding that way to allow unpatched guests.

Indeed, that's actually what I'm using in MultiROM for flo and mako (and grouper, but it is useless 'cause not all 3rd-party kernels have been updated), I just kinda "forgot" to update these threads.

Would it work on devices with locked bootloaders (Xperias). I mean :does the idea of this patch would also work on bootloader unlock allowed :no devices?
Sent from my LT22i using xda app-developers app

I am trying to build a kexec patched kernel integrated into a ROM. I make sure that the following code is there in the defconfig:
CONFIG_KEXEC=y
CONFIG_KEXEC_HARDBOOT=y
CONFIG_ATAGS_PROC=y
The ROM works well, except that it does not boot my secondary ROMs - kexec hardboot patch missing. I have multi ROM and TWRP recovery installed
What am I missing?

Logs or it didn't happen.
Show me dmesg from normal boot into android, with MultiROM and your kernel installed.
Code:
adb shell
su
dmesg > /data/local/tmp/dmesg.txt
exit
exit
adb pull /data/local/tmp/dmesg.txt

Porting?
Tassadar which things do I need to boot kexec kernel on my device (Motorola Electrify 2) .

@Tasssadar, Sorry for picking up this kinda "old topic" but I'm sadly experiencing some problems while trying to port kexec-hardboot to the Sony Xperia Z2 (aka sirius). I applyed all needed commits (cherry-picked from a apparently working Z1 repo for stock kernel) to my CM based custom kernel (https://github.com/Myself5/android_kernel_sony_msm8974/tree/kexec-cm-12.0) and it does not boot at all. It's stuck on the Sony Logo, and it seems like I can't get any log either. I also tryed the stock cm kernel with the patch (https://github.com/Myself5/android_kernel_sony_msm8974-kexec) cause I tought it might be some incompatibility, but sadly it wasn't. Hope you have any ideas to solve my problems, cause I'm out of ideas ATM. I also checked the kexec commits for other devices (namely the One Plus One) and it seems like I got everything needed.
Thanks in Advance

Tasssadar said:
In this post, I would like to explain what kexec-hardboot patch is and also bring it to light a bit more since until now, it was only burried in MultiROM thread.
@kernel developers: I would like to ask you to merge this patch to your kernels, because it is essential part of MultiROM - it allows me to boot any kernel without changing the boot partition. I realize that it is no small request, but the patch is not big, touches relatively stable parts of kernel and should not cause any problems. Thank you.
What is kexec?
It is syscall of Linux kernel, which allows you to boot another Linux kernel without restarting the device - "Linux boots itself". The functionality is equivalent to fastboot -c *cmdline* boot zImage initrd.img, but without PC and fastboot. It is fairly known thing, so more info at wikipedia and man kexec.
Standard kexec call unfortunatelly does not work on Nexus 7. It freezes somewhere, and it is very difficult to find out where - probably some of the drivers are not shut down/re-initialized properly, it is a commong thing among Android devices, which is why kexec-hardboot was made.
What is the difference between normal and hardboot exec?
Kexec-hardboot patch adds a real device restart to that process, so that all the drivers can be properly reinitialized. It stores new kernel to RAM, reboots the device as usual, and kernel from boot partition immediately jumps to the one which was stored to RAM before reboot.
Another difference is that both kernels must be patched. The "host" kernel requires a full patch, the one which is being kexecd' requires only two small compatibility patches.
To sumarize the process:
kexec --load-hardboot.... is called and kernel it loaded into RAM.
kexec -e is called. Special info is written to memory (to area which is not overwritten on reboot) and the device is rebooted.
After reboot, very early in the boot process, kernel checks if that special info is present in RAM and if so, it loads new kernel from RAM and jumps to it.
Kexecd' kernel starts and boots.
For more info, read the original thread.
Patches:
Full kernel patch: https://gist.github.com/4558647, 4.1 kernel repo, cm 10.1 kernel repo
This is the full kernel patch. Kernels with this patch can be both "host" and "guest" kernels.
Related CONFIG options:
CONFIG_KEXEC=y
CONFIG_KEXEC_HARDBOOT=y
CONFIG_ATAGS_PROC=y
CONFIG_GROUPER_HARDBOOT_RECOVERY=n
First three options must be enabled. Last one, GROUPER_HARDBOOT_RECOVERY, specifies if the kexec call should reboot to normal mode or to recovery. This can be useful if you don't have the kernel in boot partition but only as kernel in recovery partition. You usualy want to disable this option.​
Compatibility patch: https://gist.github.com/4458581
This patch only makes the kernel bootable via kexec, ie. it can't be the host kernel. This was made for Ubuntu kernel (and it was accepted), because I did not want to drag the whole patch in there. If your kernel is for Android ROMs, you should use the full patch.​
Userspace kexec binary: View attachment 1653562
That ZIP file contains kexec source, patches and README. It is from the original patch from Mike Kasick. It also contains precompiled, statically linked kexec binary, so you probably just want to use that.​
Usage:
Once you have the kernel patches and kexec userspace binary in place, just run following command to boot into new kernel:
Code:
kexec --load-hardboot zImage --initrd=initrd.img --mem-min=0x85000000 --command-line="$(cat /proc/cmdline)"
kexec -e
Note the command line parameter - cmdline from bootloader is not added automatically, you have to put it there by yourself.
Currently used by:
MultiROM - I use it to boot different kernels (eg. Ubuntu).
MOSLO - Part of Plasma Active for Nexus 7, also usefull tool for every N7 developer - read more: http://ruedigergad.com/2012/12/09/nexus-7-easily-flashaccess-entire-userdata-partition/
Authors:
This patch was made by Mike Kasick for Samsung Epic 4G. Since that, it was ported to several devices, one of them is Asus Transformer TF201 - I used patch from TF201 and modified it a bit (basically just changed few SoC specific constants). People at #ubuntu-arm helped me out with that, thanks.
Click to expand...
Click to collapse
I'm sorry for picking up this older topic as well, but I always played with the thought of merging kexec support into a kernel and I'm doing one right now.. But my secondary device is a LG G2 and since the era of Lollipop began, somehow MultiBoot just stopped working and nobody can figure out why. I think they even started to build some new concept now.. So before I spark a heated debated by Note 4 users I'd love to know if you have any idea if this patch is still applicable? Altough the only way to find out is to probably just try it lol.

Tasssadar said:
In this post, ....
Click to expand...
Click to collapse
Bro can you please mention on your wiki that kexec isnt supported for x64 devices? It will be great help and save developers hours! I was porting for oneplus 2 when a dev told me that kexec isnt there for x64. I was shocked
Is any alternative available for that? Please reply! Thanks.
All other devs, who cant make multirom to work (lollipop is the x64 era) stop working. Kexec isnt supported for x64. Find an alternative for it.

Can Anyone help me to port this? Here is my patched kernel (ignore arch/arm64) and this is /proc/iomem.
Code:
80000000-854fffff : System RAM
80008000-80fa43ef : Kernel code
81112000-817bf797 : Kernel data
8cb00000-9fefffff : System RAM
9ff00000-9ff3ffff : persistent_ram
9ff40000-9ff7ffff : persistent_ram
9ff80000-9fffffff : persistent_ram
a0000000-ffffefff : System RAM
For kexec_hb_page_addr the value i inseted is 85500000 coz as tasssadar said 884fffff + 1 = 85500000, but I don't know what value add for
Code:
#elif defined(CONFIG_ARCH_MSM8916)
/* Restart using the PMIC chip, see mach-msm/restart.c */
ldr r0, =MSM8916_HARDBOOT
mov r1, #0
str r1, [r0, #0]
loop: b loop
MSM8916_HARDBOOT, and if I compile the kernel it stucks on samsung logo.

Related

Need help to recompe kernel for the Nordic HTC Magic to support netfilter/iptables

Hi all!
As many of you might already know we have gotten a HTC Magic here in Scandinavia without support for netfilter and iptables. I've been trying to recompile a new version of the kernel on my x86_64 Archlinux box while adding these lines to the .config which I exported from my rooted phone:
Code:
CONFIG_NETFILTER=y
CONFIG_IP_NF_IPTABLES=y
CONFIG_IP_NF_MATCH_STATE=y
CONFIG_IP_NF_FILTER=y
CONFIG_IP_NF_TARGET_REJECT=Y
I am a n00b when it comes to compiling, booting and flashing Android stuff and not really a git wizard either. I've downloaded the source, cross-compiled it with my new .config and tried booting it with fastboot only to stare at the HTC logo for 15 minutes before giving up. I suspect that I have probably failed doing the right thing at more than one step in the process but have troubles finding a full guide for Android kernel hacking and loading on the web. I am not even sure if I really compiled the 2.6.27 version used in the daldroid build I have on the phone instead of the latest version in git.
I will provide the step-by-step details below.
1. Downloading and installing the CodeSourcery Cross-compiler from
HTML:
http://www.codesourcery.com/sgpp/lite/arm/portal/release858
2. Downloading setting up the android source code:
Code:
git clone git://android.git.kernel.org/kernel/msm.git
git checkout --track -b msm_htc origin/android-msm-2.6.27
git checkout -f
(here I noticed that the checkouts did not seem to download any extra code, is that expected?)
3. Setting up the cross compilation in the Makefile.
Code:
CROSS_COMPILE=../arm-2009q1/bin/arm-none-linux-gnueabi-
4. Using my .config when running make like this:
Code:
make zImage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
(a few additional options not present in the .config-file need to be manually specified before the build starts)
5. Extracting the ramdisk from the nordic daldroid boot.img:
Code:
split_bootimg.pl boot.img
5. Trying the new kernel with the daldroid ramdisk:
Code:
fastboot boot arch/arm/boot/zImage ../../boot.img-ramdisk.daldroid.gz
creating boot image...
creating boot image - 1634304 bytes
downloading 'boot.img'... OKAY
booting... OKAY
6. Fail
I would really appreciate some help to get this going. How can I confirm that 2.6.27 was really used? What other gotchas I have forgotten about?
CONFIG_MACH_SAPPHIRE=y
ridli said:
CONFIG_MACH_SAPPHIRE=y
Click to expand...
Click to collapse
Hmm, unfortunately this option is already set to true.
Perhaps it is mainly a fastboot problem. I dunno.
maybe but why you dont try to make a boot.img and flash it?
did you set the system type to msm? it is important.
copy here your .config, maybe we can try to see if something is wrong or you can do this.
Code:
make ARCH=arm CROSS_COMPILE=../arm-2009q1/bin/arm-none-linux-gnueabi- msm_defconfig
for do a default msm .config.
For what I've seen, you're not making a kernel+ramdisk image, but loading them both splitted. Maybe you're missing the command line parametters?
Also, you can patch the kernel code to make it light up one of the leds so you can know if at least the kernel is actually booting or is getting stucked somewhere. To make this, you can patch, on board-sapphire.c, the init function:
Code:
static void __init sapphire_init(void)
{
int rc;
printk("sapphire_init() revision = 0x%X\n", system_rev);
/*
* Setup common MSM GPIOS
*/
config_gpios();
msm_hw_reset_hook = sapphire_reset;
msm_acpu_clock_init(&sapphire_clock_data);
/* adjust GPIOs based on bootloader request */
printk("sapphire_init: cpld_usb_hw2_sw = %d\n", cpld_usb_h2w_sw);
gpio_set_value(SAPPHIRE_GPIO_USB_H2W_SW, cpld_usb_h2w_sw);
[] INSERT HERE:
gpio_set_value(SAPPHIRE_CPLD_LED_BASE+XX, 1);
Where XX is the led number you want to enable.
Any progresses ?
shwan_3 said:
Any progresses ?
Click to expand...
Click to collapse
Not yet, but the posts above are encouraging. I'll post my .config below.
My .config
I stripped all the '#' commented lines from the file to have it go below the 1000 lines limit.
Code:
CONFIG_ARM=y
CONFIG_SYS_SUPPORTS_APM_EMULATION=y
CONFIG_GENERIC_GPIO=y
CONFIG_GENERIC_TIME=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_MMU=y
CONFIG_GENERIC_HARDIRQS=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_HAVE_LATENCYTOP_SUPPORT=y
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_TRACE_IRQFLAGS_SUPPORT=y
CONFIG_HARDIRQS_SW_RESEND=y
CONFIG_GENERIC_IRQ_PROBE=y
CONFIG_RWSEM_GENERIC_SPINLOCK=y
CONFIG_GENERIC_HWEIGHT=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_ARCH_SUPPORTS_AOUT=y
CONFIG_ZONE_DMA=y
CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ=y
CONFIG_OPROFILE_ARMV6=y
CONFIG_OPROFILE_ARM11_CORE=y
CONFIG_VECTORS_BASE=0xffff0000
CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"
CONFIG_EXPERIMENTAL=y
CONFIG_BROKEN_ON_SMP=y
CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_LOCALVERSION=""
CONFIG_LOCALVERSION_AUTO=y
CONFIG_SWAP=y
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
CONFIG_LOG_BUF_SHIFT=17
CONFIG_BLK_DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE=""
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_SYSCTL=y
CONFIG_PANIC_TIMEOUT=5
CONFIG_EMBEDDED=y
CONFIG_UID16=y
CONFIG_KALLSYMS=y
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y
CONFIG_BUG=y
CONFIG_COMPAT_BRK=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_ANON_INODES=y
CONFIG_EPOLL=y
CONFIG_SIGNALFD=y
CONFIG_TIMERFD=y
CONFIG_EVENTFD=y
CONFIG_SHMEM=y
CONFIG_ASHMEM=y
CONFIG_VM_EVENT_COUNTERS=y
CONFIG_SLAB=y
CONFIG_PROFILING=y
CONFIG_OPROFILE=y
CONFIG_HAVE_OPROFILE=y
CONFIG_HAVE_KPROBES=y
CONFIG_HAVE_KRETPROBES=y
CONFIG_PROC_PAGE_MONITOR=y
CONFIG_HAVE_GENERIC_DMA_COHERENT=y
CONFIG_SLABINFO=y
CONFIG_RT_MUTEXES=y
CONFIG_BASE_SMALL=0
CONFIG_MODULES=y
CONFIG_MODULE_UNLOAD=y
CONFIG_MODULE_FORCE_UNLOAD=y
CONFIG_KMOD=y
CONFIG_BLOCK=y
CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED_AS=y
CONFIG_DEFAULT_AS=y
CONFIG_DEFAULT_IOSCHED="anticipatory"
CONFIG_CLASSIC_RCU=y
CONFIG_ARCH_MSM7XXX=y
CONFIG_ARCH_MSM7201A=y
CONFIG_MACH_TROUT=y
CONFIG_MACH_SAPPHIRE=y
CONFIG_HTC_BATTCHG=y
CONFIG_HTC_PWRSINK=y
CONFIG_MSM_AMSS_VERSION=6225
CONFIG_MSM_AMSS_VERSION_6225=y
CONFIG_MSM_AMSS_SUPPORT_256MB_EBI1=y
CONFIG_MSM_DEBUG_UART_NONE=y
CONFIG_MSM7XXX_USE_GP_TIMER=y
CONFIG_MSM7XXX_SLEEP_MODE_POWER_COLLAPSE_SUSPEND=y
CONFIG_MSM7XXX_SLEEP_MODE=0
CONFIG_MSM7XXX_IDLE_SLEEP_MODE_POWER_COLLAPSE=y
CONFIG_MSM7XXX_IDLE_SLEEP_MODE=1
CONFIG_MSM7XXX_IDLE_SLEEP_MIN_TIME=20000000
CONFIG_MSM7XXX_IDLE_SPIN_TIME=80000
CONFIG_MSM_IDLE_STATS=y
CONFIG_MSM_IDLE_STATS_FIRST_BUCKET=62500
CONFIG_MSM_IDLE_STATS_BUCKET_SHIFT=2
CONFIG_MSM_IDLE_STATS_BUCKET_COUNT=10
CONFIG_MSM_FIQ_SUPPORT=y
CONFIG_MSM_SERIAL_DEBUGGER=y
CONFIG_MSM_SMD=y
CONFIG_MSM_ONCRPCROUTER=y
CONFIG_MSM_RPCSERVERS=y
CONFIG_MSM_CPU_FREQ=y
CONFIG_MSM_CPU_FREQ_MSM7K=y
CONFIG_MSM_CPU_FREQ_SCALING_MAX=528000
CONFIG_MSM_CPU_FREQ_SCALING_MIN=384000
CONFIG_MSM_HW3D=y
CONFIG_MSM_ADSP=y
CONFIG_HTC_HEADSET=y
CONFIG_HTC_ACOUSTIC=y
CONFIG_WIFI_CONTROL_FUNC=y
CONFIG_WIFI_MEM_PREALLOC=y
CONFIG_CPU_32=y
CONFIG_CPU_V6=y
CONFIG_CPU_32v6=y
CONFIG_CPU_ABRT_EV6=y
CONFIG_CPU_PABRT_NOIFAR=y
CONFIG_CPU_CACHE_V6=y
CONFIG_CPU_CACHE_VIPT=y
CONFIG_CPU_COPY_V6=y
CONFIG_CPU_TLB_V6=y
CONFIG_CPU_HAS_ASID=y
CONFIG_CPU_CP15=y
CONFIG_CPU_CP15_MMU=y
CONFIG_ARM_THUMB=y
CONFIG_TICK_ONESHOT=y
CONFIG_NO_HZ=y
CONFIG_HIGH_RES_TIMERS=y
CONFIG_GENERIC_CLOCKEVENTS_BUILD=y
CONFIG_PREEMPT=y
CONFIG_HZ=100
CONFIG_AEABI=y
CONFIG_ARCH_FLATMEM_HAS_HOLES=y
CONFIG_SELECT_MEMORY_MODEL=y
CONFIG_FLATMEM_MANUAL=y
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
CONFIG_PAGEFLAGS_EXTENDED=y
CONFIG_SPLIT_PTLOCK_CPUS=4
CONFIG_RESOURCES_64BIT=y
CONFIG_ZONE_DMA_FLAG=1
CONFIG_BOUNCE=y
CONFIG_VIRT_TO_BUS=y
CONFIG_ALIGNMENT_TRAP=y
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="mem=64M console=ttyMSM,115200n8"
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_TABLE=y
CONFIG_CPU_FREQ_DEFAULT_GOV_MSM7K=y
CONFIG_CPU_FREQ_GOV_PERFORMANCE=y
CONFIG_CPU_FREQ_GOV_USERSPACE=y
CONFIG_CPU_FREQ_GOV_ONDEMAND=y
CONFIG_CPU_FREQ_GOV_MSM7K=y
CONFIG_BINFMT_ELF=y
CONFIG_PM=y
CONFIG_PM_SLEEP=y
CONFIG_SUSPEND=y
CONFIG_SUSPEND_FREEZER=y
CONFIG_HAS_WAKELOCK=y
CONFIG_HAS_EARLYSUSPEND=y
CONFIG_WAKELOCK=y
CONFIG_WAKELOCK_STAT=y
CONFIG_USER_WAKELOCK=y
CONFIG_EARLYSUSPEND=y
CONFIG_FB_EARLYSUSPEND=y
CONFIG_ARCH_SUSPEND_POSSIBLE=y
CONFIG_NET=y
CONFIG_PACKET=y
CONFIG_NETFILTER=y
CONFIG_IP_NF_IPTABLES=y
CONFIG_IP_NF_MATCH_STATE=y
CONFIG_IP_NF_FILTER=y
CONFIG_UNIX=y
CONFIG_INET=y
CONFIG_IP_ADVANCED_ROUTER=y
CONFIG_ASK_IP_FIB_HASH=y
CONFIG_IP_FIB_HASH=y
CONFIG_IP_MULTIPLE_TABLES=y
CONFIG_IP_ROUTE_VERBOSE=y
CONFIG_TCP_CONG_CUBIC=y
CONFIG_DEFAULT_TCP_CONG="cubic"
CONFIG_ANDROID_PARANOID_NETWORK=y
CONFIG_BT=y
CONFIG_BT_L2CAP=y
CONFIG_BT_SCO=y
CONFIG_BT_RFCOMM=y
CONFIG_BT_RFCOMM_TTY=y
CONFIG_BT_BNEP=y
CONFIG_BT_HIDP=y
CONFIG_BT_HCIUART=y
CONFIG_BT_HCIUART_H4=y
CONFIG_BT_HCIUART_LL=y
CONFIG_FIB_RULES=y
CONFIG_RFKILL=y
CONFIG_RFKILL_LEDS=y
CONFIG_UEVENT_HELPER_PATH=""
CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
CONFIG_FW_LOADER=y
CONFIG_EXTRA_FIRMWARE=""
CONFIG_MTD=y
CONFIG_MTD_PARTITIONS=y
CONFIG_MTD_CMDLINE_PARTS=y
CONFIG_MTD_CHAR=y
CONFIG_MTD_BLKDEVS=y
CONFIG_MTD_BLOCK=y
CONFIG_MTD_MAP_BANK_WIDTH_1=y
CONFIG_MTD_MAP_BANK_WIDTH_2=y
CONFIG_MTD_MAP_BANK_WIDTH_4=y
CONFIG_MTD_CFI_I1=y
CONFIG_MTD_CFI_I2=y
CONFIG_MTD_MSM_NAND=y
CONFIG_BLK_DEV=y
CONFIG_MISC_DEVICES=y
CONFIG_ANDROID_PMEM=y
CONFIG_TIMED_OUTPUT=y
CONFIG_TIMED_GPIO=y
CONFIG_BINDER_IPC=y
CONFIG_KERNEL_DEBUGGER_CORE=y
CONFIG_LOW_MEMORY_KILLER=y
CONFIG_LOGGER=y
CONFIG_ANDROID_RAM_CONSOLE=y
CONFIG_ANDROID_RAM_CONSOLE_ENABLE_VERBOSE=y
CONFIG_ANDROID_RAM_CONSOLE_ERROR_CORRECTION=y
CONFIG_ANDROID_RAM_CONSOLE_ERROR_CORRECTION_DATA_SIZE=128
CONFIG_ANDROID_RAM_CONSOLE_ERROR_CORRECTION_ECC_SIZE=16
CONFIG_ANDROID_RAM_CONSOLE_ERROR_CORRECTION_SYMBOL_SIZE=8
CONFIG_ANDROID_RAM_CONSOLE_ERROR_CORRECTION_POLYNOMIAL=0x11d
CONFIG_HAVE_IDE=y
CONFIG_MD=y
CONFIG_BLK_DEV_DM=y
CONFIG_DM_DEBUG=y
CONFIG_DM_CRYPT=y
CONFIG_DM_UEVENT=y
CONFIG_NETDEVICES=y
CONFIG_DUMMY=y
CONFIG_NET_ETHERNET=y
CONFIG_MII=y
CONFIG_SMC91X=y
CONFIG_NETDEV_1000=y
CONFIG_NETDEV_10000=y
CONFIG_PPP=y
CONFIG_PPP_ASYNC=y
CONFIG_PPP_DEFLATE=y
CONFIG_PPP_BSDCOMP=y
CONFIG_SLHC=y
CONFIG_MSM_RMNET=y
CONFIG_INPUT=y
CONFIG_INPUT_EVDEV=y
CONFIG_INPUT_KEYRESET=y
CONFIG_INPUT_TOUCHSCREEN=y
CONFIG_TOUCHSCREEN_ELAN_I2C_8232=y
CONFIG_TOUCHSCREEN_SYNAPTICS_I2C_RMI=y
CONFIG_INPUT_MISC=y
CONFIG_INPUT_UINPUT=y
CONFIG_INPUT_GPIO=y
CONFIG_INPUT_KEYCHORD=y
CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_MSM=y
CONFIG_SERIAL_MSM_CLOCK_CONTROL=y
CONFIG_SERIAL_MSM_RX_WAKEUP=y
CONFIG_SERIAL_MSM_HS=y
CONFIG_UNIX98_PTYS=y
CONFIG_I2C=y
CONFIG_I2C_BOARDINFO=y
CONFIG_I2C_HELPER_AUTO=y
CONFIG_I2C_MSM=y
CONFIG_SENSORS_AKM8976=y
CONFIG_SENSORS_PCA963X=y
CONFIG_SENSORS_MT9T013=y
CONFIG_SENSORS_MT9P012=y
CONFIG_POWER_SUPPLY=y
CONFIG_SSB_POSSIBLE=y
CONFIG_DAB=y
CONFIG_VIDEO_OUTPUT_CONTROL=y
CONFIG_FB=y
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
CONFIG_FB_MSM=y
CONFIG_FB_MSM_LOGO=y
CONFIG_HID_SUPPORT=y
CONFIG_HID=y
CONFIG_USB_SUPPORT=y
CONFIG_USB_ARCH_HAS_HCD=y
CONFIG_USB_FUNCTION=y
CONFIG_USB_FUNCTION_MSM_HSUSB=y
CONFIG_USB_FUNCTION_ADB=y
CONFIG_USB_FUNCTION_MASS_STORAGE=y
CONFIG_MMC=y
CONFIG_MMC_UNSAFE_RESUME=y
CONFIG_MMC_EMBEDDED_SDIO=y
CONFIG_MMC_PARANOID_SD_INIT=y
CONFIG_MMC_BLOCK=y
CONFIG_MMC_BLOCK_PARANOID_RESUME=y
CONFIG_MMC_MSM7XXX=y
CONFIG_NEW_LEDS=y
CONFIG_LEDS_CLASS=y
CONFIG_LEDS_GPIO=y
CONFIG_LEDS_CPLD=y
CONFIG_LEDS_TRIGGERS=y
CONFIG_LEDS_TRIGGER_TIMER=y
CONFIG_LEDS_TRIGGER_HEARTBEAT=y
CONFIG_LEDS_TRIGGER_SLEEP=y
CONFIG_SWITCH=y
CONFIG_SWITCH_GPIO=y
CONFIG_RTC_LIB=y
CONFIG_RTC_CLASS=y
CONFIG_RTC_HCTOSYS=y
CONFIG_RTC_HCTOSYS_DEVICE="rtc0"
CONFIG_RTC_INTF_ALARM=y
CONFIG_RTC_DRV_MSM7XXX=y
CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_POSIX_ACL=y
CONFIG_EXT2_FS_SECURITY=y
CONFIG_EXT3_FS=y
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT3_FS_SECURITY=y
CONFIG_JBD=y
CONFIG_FS_MBCACHE=y
CONFIG_FS_POSIX_ACL=y
CONFIG_INOTIFY=y
CONFIG_INOTIFY_USER=y
CONFIG_FAT_FS=y
CONFIG_VFAT_FS=y
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
CONFIG_PROC_FS=y
CONFIG_PROC_SYSCTL=y
CONFIG_SYSFS=y
CONFIG_TMPFS=y
CONFIG_YAFFS_FS=y
CONFIG_YAFFS_YAFFS1=y
CONFIG_YAFFS_YAFFS2=y
CONFIG_YAFFS_AUTO_YAFFS2=y
CONFIG_YAFFS_SHORT_NAMES_IN_RAM=y
CONFIG_NETWORK_FILESYSTEMS=y
CONFIG_MSDOS_PARTITION=y
CONFIG_NLS=y
CONFIG_NLS_DEFAULT="iso8859-1"
CONFIG_NLS_CODEPAGE_437=y
CONFIG_NLS_ISO8859_1=y
CONFIG_PRINTK_TIME=y
CONFIG_ENABLE_WARN_DEPRECATED=y
CONFIG_ENABLE_MUST_CHECK=y
CONFIG_FRAME_WARN=1024
CONFIG_MAGIC_SYSRQ=y
CONFIG_DEBUG_FS=y
CONFIG_DEBUG_KERNEL=y
CONFIG_DETECT_SOFTLOCKUP=y
CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC_VALUE=0
CONFIG_SCHED_DEBUG=y
CONFIG_SCHEDSTATS=y
CONFIG_TIMER_STATS=y
CONFIG_DEBUG_PREEMPT=y
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_SPINLOCK_SLEEP=y
CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_VM=y
CONFIG_DEBUG_SG=y
CONFIG_FRAME_POINTER=y
CONFIG_HAVE_FTRACE=y
CONFIG_HAVE_DYNAMIC_FTRACE=y
CONFIG_HAVE_ARCH_KGDB=y
CONFIG_CRYPTO=y
CONFIG_CRYPTO_ALGAPI=y
CONFIG_CRYPTO_BLKCIPHER=y
CONFIG_CRYPTO_MANAGER=y
CONFIG_CRYPTO_CBC=y
CONFIG_CRYPTO_AES=y
CONFIG_CRYPTO_TWOFISH=y
CONFIG_CRYPTO_TWOFISH_COMMON=y
CONFIG_CRYPTO_HW=y
CONFIG_BITREVERSE=y
CONFIG_CRC_CCITT=y
CONFIG_CRC32=y
CONFIG_ZLIB_INFLATE=y
CONFIG_ZLIB_DEFLATE=y
CONFIG_REED_SOLOMON=y
CONFIG_REED_SOLOMON_ENC8=y
CONFIG_REED_SOLOMON_DEC8=y
CONFIG_PLIST=y
CONFIG_HAS_IOMEM=y
CONFIG_HAS_IOPORT=y
CONFIG_HAS_DMA=y
biktor_gj said:
For what I've seen, you're not making a kernel+ramdisk image, but loading them both splitted. Maybe you're missing the command line parametters?
Where XX is the led number you want to enable.
Click to expand...
Click to collapse
Yeah, that could be a problem. I was under the impression that fastboot built the boot.img itself before transfering the kernel to the phone.
Interesting test with the leds. I'll check it out if I don't solve this.
I'm working on the exact same thing. can you contact me via im? pm for my screen names
I think that HTC patched some things in that are not available in the source tree... So I doubt that you'll be able to get a kernel running build from source. If you do happen to make it run let us know
Amon_RA said:
I think that HTC patched some things in that are not available in the source tree... So I doubt that you'll be able to get a kernel running build from source. If you do happen to make it run let us know
Click to expand...
Click to collapse
I would not be suprised at all if that was the case. However, since the Linux kernel is GPL, such patches, as I understand it, also need to be under the GPL and made available upon request. Is there a public HTC source tree anywhere?
And btw, how can I fix the "recompile" misspelling in the title of this thread? It is driving me insane
This might be a very stupid question, but here it goes:
Shouldn't it be possible to build all the extra netfilter/iptables support for the vanilla 2.6.27 kernel as modules and insmod them when running HTC's kernel? Or will that result in swift and horrible death?
i don't see why it wouldn't. we wouldn't need the source for htc's kernel then, right? just figure out how to build the modules? isn't that kind of how proprietary video drivers work for linux?
EDIT: Modules will work, that is certain. A little googling confirmed that's how wlan and such work (on Android)
EDIT 2: It seems like there is .config for the kernel on the phone that can be used with the standard 2.6.27 kernel source to build the android kernel.
EDIT 3: found the kernel here http://github.com/zhoukejun/android-2.6.27-yf255/tree/master
sammypwns said:
i don't see why it wouldn't. we wouldn't need the source for htc's kernel then, right? just figure out how to build the modules? isn't that kind of how proprietary video drivers work for linux?
EDIT: Modules will work, that is certain. A little googling confirmed that's how wlan and such work (on Android)
EDIT 2: It seems like there is .config for the kernel on the phone that can be used with the standard 2.6.27 kernel source to build the android kernel.
EDIT 3: found the kernel here http://github.com/zhoukejun/android-2.6.27-yf255/tree/master
Click to expand...
Click to collapse
I wonder if access to the kernel can help with the Bluetooth problems in the Hero ROM?
Bump!
Is there any news about iptables on PVT 32A based sapphire?
gboddina said:
Bump!
Is there any news about iptables on PVT 32A based sapphire?
Click to expand...
Click to collapse
Well. The kernels that we successfully have built by cross-compiling refuse to boot. Looking at the config.gz that the phone exports and trying
Code:
make oldconfig
we have learnt that HTC has a lot of parameters specified for code that appears not to be in the standard android 2.6.27 kernel source tree. We would be very very happy if someone around here could point us to the repository holding HTC specific patches and code for the Magic/Sapphire.
Based on http://www.mail-archive.com/[email protected]/msg00442.html , it seems we need to find the source of the android-msm-htc-2.6.27 kernel.
Which don't seems to be public.
gboddina said:
Based on http://www.mail-archive.com/[email protected]/msg00442.html , it seems we need to find the source of the android-msm-htc-2.6.27 kernel.
Which don't seems to be public.
Click to expand...
Click to collapse
But it has to be made public if requested. That is essence of the GPL.
i emailed them a while ago. i also talked to someone who has gotten his own kernels to boot but on the dream dev phone

[PATCHES] Kexec syscall support, boots kernels from SD or USB (11/6/11, GB support)

11/6/11 Update: Added statically-linked kexec to kexec_patches.tar.gz and example update.zips. Now works in stock recovery and CM7 CWM (with a kexec-patched kernel).
10/19/11 Update: Added patches for the recently released GB sources to kexec_patches.tar.gz.
Attached is a set of patches (kexec_patches.tar.gz) against EC05, and the recently released GB sources, to implement kexec syscall support in the Epic's kernel. kexec enables the booting of kernels "directly" from the SD card or over USB without having to flash them to the device first. This allows us to easily use, test, and switch between many kernels, not just the one (two with recovery) there's room for on flash.
When used in conjuction with modified init.rc scripts, this allows entire ROMs (with their own kernels) to run from SD card. In short, this allows us to run custom-kernel ROMs (e.g,. CyanogenMod) alongside each other or a stock kernel without having to flash back and forth.
Also attached is a modified version of the kexec userspace tool (also in kexec_patches.tar.gz, along with source and patches) that facilitates the proces of loading and kexecing a kernel image. Finally, attached is a demo EC05 kernel with kexec enabled (demo_kernel.tar.gz; mostly stock: RFS support only, testkeys recovery w/adbd, but does inlcude the keyboard patches), example update.zips that kexec an SD-card kernel from recovery--either as a normal boot (boot_zImage.zip) or recovery boot (boot_zImage_recovery.zip), and a script (patch_decomp_cachebufram.sh) to binary patch unmodified kernels to kexec boot faster.
Note, this thread is primarilly intended for kernel developers. Kexec probably won't be of great utility to end users until commonly-used kernels are patched. Also, although stock kernels can be kexec'd, they need some init.rc modifications boot an entire ROM from SD card. Hopefully the fine folks here will come up with a user-friendly implementation of this work that's easy for everyone to use.
Instructions:
Flash a kexec-enabled kernel (e.g., the attached demo kernel) to either /dev/block/bml7 or /dev/block/bml8. For testing purposes, this kernel needs either "ro.secure=0" or "ro.debuggable=1" set in default.prop, and also needs recovery.rc/fota.rc modified to spawn the adbd service, so that an adb root shell is available while in recovery. Also copy the attached kexec tool to a convenient location on the device (e.g., /data/local/tmp/kexec).
Reboot into recovery. If the kexec kernel is installed to bml7, run "adb reboot recovery" while the phone is running. If installed to bml8, power down and boot into recovery by holding the volume-down, camera, and power buttons.
Make sure adb is running as root. If it's not, try running "adb root".
Find the kernel (zImage) you wish to boot. These can be extracted from a kernel update.zip or Odin .tar file, or use the demo kernel again.
Push the zImage into RAM (tmpfs) with:
Code:
adb push zImage /tmp
Now, open an adb root shell with "adb shell" and run the commands:
Code:
mount -ro remount /dev/block/stl6 /mnt/.lfs
mount -ro remount /dev/block/stl9 /system
mount -ro remount /dev/block/stl10 /data
mount -ro remount /dev/block/stl11 /cache
/data/local/tmp/kexec --load-hardboot --mem-min=0x50000000 --append="console=ttySAC2,115200 loglevel=4" /tmp/zImage
sync
/data/local/tmp/kexec -e
after which the phone will reboot, show the SAMSUNG logo, and eventually boot the kexec'd kernel. Do note that when booting unmodified kernels (see below), the SAMSUNG logo will persist for ~30 seconds longer than usual.
Also note that kexec performs an "abrupt" reboot, i.e., it doesn't shutdown the system normally. Hence it's important to kexec from recovery where few services are running. It's also prudent to remount file systems read-only and sync them to avoid any potential (although unlikely) of corruption.
In the future, kexec could be better integrated into the Android framework to allow for a clean shutdown. Otherwise, probably the best way to deploy kexec is through an update.zip file that boots a kernel from the SD card. See the attached example update.zips.
Technical details:
kexec is feature of Linux that allows it to directly execute (boot) a new kernel in place of itself, allowing Linux to effectively serve as its own bootloader.
The kexec procedure is two step. The first "kexec" command loads a zImage from disk, constructs parameters (e.g., the kernel command line), and stages it in memory, after which Linux continues to run as normal. The second "kexec" command tells Linux to execute (boot) the staged kernel.
In the standard implementation, Linux "soft boots" kexec'd kernels. That is, on "kexec -e" the running instance of Linux shuts-down all devices, drivers, and goes through the process of unloading itself as it does during a normal reboot. However, instead of invoking a hardware reboot, Linux, at the final stage of unloading itself, jumps to start executing the new kernel.
This soft boot process requires that Linux hardware drivers are fully capable of unloading, reloading, and reinitializing the associated hardware without hardware-reboot or bootloader assistance. Since, for many built-in drivers, this capability is only used by kexec, hardware is often left in an unexpected or unknown state on unload, and thus the kexec'd kernel hangs on boot. Unfortunately this is the case with the Epic kernel, and soft booting doesn't work.
To work around this, the attached patches implement a "hard boot" method for kexecing kernels. Here, we use kexec to stage a kernel in memory as usual. On "kexec -e", Linux shuts-down as before, and at the very end of the unloading process it does two things: (i) scribble some information on how to boot the kexec'd kernel to a "special place" in memory, and (ii) performs a hardware reboot, invoking the Epic bootloader as a normal reboot does.
On reboot, the bootloader loads the (previously-running) bml7 or bml8 kernel and starts executing it. Here, the hardboot patch modifies the Linux the zImage decompressor code to check the "special place" in memory to see if we're actually kexecing a different kernel. If so, it switches over to the other kernel, already staged elsewhere in memory.
Known Issues:
Kernel Command Line:
Kexec (via hardboot) can boot stock or non-kexec-modified custom kernels. However, unless the copy_atags patch is applied, they can only use the kernel command line provided by the bootloader, as opposed to the custom command line provided by kexec. Although this isn't a problem when kexecing from a bml7 boot kernel, kexecing from a bml8 kernel runs recovery (fota.rc) instead of a normal boot (init.rc).
With the copy_atags patch, the command line for the kexec'd kernel must be provided by with kexec's --append option. These are the command lines provided by the bootloader in normal boot and recovery scenarios, any of which may be used:
Code:
Normal boot (init.rc):
console=ttySAC2,115200 loglevel=4
"adb reboot recovery" (recovery.rc):
bootmode=2 console=ttySAC2,115200 loglevel=4
Three-finger recovery boot (fota.rc):
bootmode=3 console=ttySAC2,115200 loglevel=4
Slow Booting:
Kexec booting of a stock or non-kexec-modified custom kernel is known take significantly longer than a regular boot, sitting at the SAMSUNG logo for 35 seconds instead of 8. The decomp_cachebufram patch resolves this issue for modified kernels. In addition, the attached patch_decomp_cachebufram.sh script will binary patch the decompressor code for any (to my knowledge) Epic kernel.
Many more details on the patches themselves are in the accompanying READMEs.
Mirror links:
Kernel & kexec-tools patches: kexec_patches.tar.gz
Kexec EC05 demonstration kernel: demo_kernel.tar.gz
Recovery script to boot /sdcard/zImage (normal boot): boot_zImage.zip
Recovery script to boot /sdcard/zImage (recovery boot): boot_zImage_recovery.zip
Script to binary patch decompressor code: patch_decomp_cachebufram.sh
Is this different in function than rodderik's dual boot support?
I know his didn't include usb booting support, but sdcard booting appears to be the same...although this seems a little cleaner, possibly
Sent from my SPH-D700 using xda premium
squshy 7 said:
Is this different in function than rodderik's dual boot support?
I know his didn't include usb booting support, but sdcard booting appears to be the same...although this seems a little cleaner, possibly
Sent from my SPH-D700 using xda premium
Click to expand...
Click to collapse
His uses a modified init, which then choses to load which init.rc, the one names init.rc.sdcard or normal init.rc. This (kexec method) reminds me A LOT like how they ran linux/android on winmo devices...it shuts down android and then runs the kernel they want (if I read correctly).
squshy 7 said:
Is this different in function than rodderik's dual boot support?
I know his didn't include usb booting support, but sdcard booting appears to be the same...although this seems a little cleaner, possibly
Sent from my SPH-D700 using xda premium
Click to expand...
Click to collapse
Yes. The genocide implementation allows a ROM to boot from the sd card as long as the kernel on the main ROM supports the sd ROM. this means you cannot dual boot a gingerbread and a froyo ROM because the need different kernels .
With this patch that limitation is removed as the sd based ROM can use its own separate kernel. This you may run stock ec05 and keep cyanogen or a gingerbread on the sd card to test and play with.
Great work mkasick
Sent from my SPH-D700 using Tapatalk
I was never interested in the dual boot feature since that was ROM's only and itwas limited by kernel support.
But now this really interest me, can't wait till we see some developers take advantage of this.
Sent from my SPH-D700 using xda premium
All I have to say is hope you stick with the epic your amazing
Sent from my SPH-D700 using Tapatalk
Yes, this is complementary to Rodderik's dual boot. Kexec allows one to load a different kernel, but it still defaults to booting the ROM stored in flash. Which is great for kernel testing, but not of much use otherwise.
It's easy enough to modify a kernel to load a ROM only from SD, but then we'll start seeing a divide between "bml kernels" and "SD kernels", when really it'd be nice to have init scripts that support both. That's where Rodderik's work comes in.
Probably the best is to have a kernel command line parameter that specifies where the ROM is located, so it can be passed in. Something like "console=ttySAC2,115200 loglevel=4 systemfs=mmcblk0p2 datafs=mmcblk0p3 cachefs=mmcblk0p4". These would default to stl9, stl10, stl11 respectively if unspecified. The kernel command line is available to init through "/proc/cmdline", and it's easy enough to parse in a shell script.
But yes, keeping a working ROM on flash while testing/debugging CyanogenMod was my primary motivation, since I need a working phone "during the day" and can't touch CyanogenMod otherwise.
formula84 said:
All I have to say is hope you stick with the epic your amazing
Click to expand...
Click to collapse
Thanks!
I'm much of a year out on a full upgrade, and I'm not considering a new device sooner as long as my Epic still works.
Edit: An obvoius limitation is modem compatibility. I've avoided the GB leaks thus far, so I'm not sure what's the status with that. But if GB supports the EC05 modem, then you can dual boot EC05 and GB-whatever. Same if EC05 supports newer modems.
Speaking of which, anyone know what GB modem compatibilty is like?
mkasick said:
Yes, this is complementary to Rodderik's dual boot. Kexec allows one to load a different kernel, but it still defaults to booting the ROM stored in flash. Which is great for kernel testing, but not of much use otherwise.
It's easy enough to modify a kernel to load a ROM only from SD, but then we'll start seeing a divide between "bml kernels" and "SD kernels", when really it'd be nice to have init scripts that support both. That's where Rodderik's work comes in.
Probably the best is to have a kernel command line parameter that specifies where the ROM is located, so it can be passed in. Something like "console=ttySAC2,115200 loglevel=4 systemfs=mmcblk0p2 datafs=mmcblk0p3 cachefs=mmcblk0p4". These would default to stl9, stl10, stl11 respectively if unspecified. The kernel command line is available to init through "/proc/cmdline", and it's easy enough to parse in a shell script.
But yes, keeping a working ROM on flash while testing/debugging CyanogenMod was my primary motivation, since I need a working phone "during the day" and can't touch CyanogenMod otherwise.
Thanks!
I'm much of a year out on a full upgrade, and I'm not considering a new device sooner as long as my Epic still works.
Edit: An obvoius limitation is modem compatibility. I've avoided the GB leaks thus far, so I'm not sure what's the status with that. But if GB supports the EC05 modem, then you can dual boot EC05 and GB-whatever. Same if EC05 supports newer modems.
Speaking of which, anyone know what GB modem compatibilty is like?
Click to expand...
Click to collapse
As far as I know, and from experience, modems are a free for all except for bonsai. Ec05 modem works on gb, leaked modems work on ec05.
this is definitely very cool, thanks mkasick!
Sent from my SPH-D700 using XDA Premium App
mkasick you never cease to amaze me...i'll definately play with this, this week if i have the time!
Rodderik said:
mkasick you never cease to amaze me...i'll definately play with this, this week if i have the time!
Click to expand...
Click to collapse
Great!
If you run into something not particularly straight forward, or think there's something I can clarify, please ask. I've been playing around with this long enough that I fear I might've overlooked documenting a detail or two that would be helpful for others.
So to patch any kernel u just point the script to the zImage?
sent from my epic 4g. with the key skips.
ugothakd said:
So to patch any kernel u just point the script to the zImage?
Click to expand...
Click to collapse
The script only implements one patch, it allows any kernel to boot ~30 seconds faster when kexec'd.
But yes, "./patch_decomp_cachebufram.sh zImage" modifies that zImage to boot faster. It requires the xxd hexdump tool that's packaged with vim.
Kexec support itself, along with the slew of other source patches, has to be applied to a kernel source tree, from which a new kernel must be built to take advantage of them.
mkasick said:
The script only implements one patch, it allows any kernel to boot ~30 seconds faster when kexec'd.
But yes, "./patch_decomp_cachebufram.sh zImage" modifies that zImage to boot faster. It requires the xxd hexdump tool that's packaged with vim.
Kexec support itself, along with the slew of other source patches, has to be applied to a kernel source tree, from which a new kernel must be built to take advantage of them.
Click to expand...
Click to collapse
I see...so its a no-go for gb. Or at least quick gingerbread.
sent from my epic 4g. with the key skips.
ugothakd said:
I see...so its a no-go for gb. Or at least quick gingerbread.
Click to expand...
Click to collapse
You should be able to kexec a GB kernel, but you'd need an EC05-ish /system on flash to boot recovery. Unless GB recovery is compatible with Froyo kernels.
If you're going to boot a GB kernel, you'd probably want to repackage the initramfs with an init.rc that loads the rest of the GB ROM off SD. It's actually not a bad way to keep EC05 around for a stable, working phone, and to test GB leaks as they happen. Which, hopefully, shouldn't be much longer.
wow mkasick, you never cease to amaze me bro...
I wish I wasn't working so many damned hours now, with your patches, I really want the dual boot now. Like you, the need for a working phone at all times is what keeps me from flashing more ROMs, including EpicCM and the gb leaks...
I hope Rodderik figures this out pretty quickly, as most of my dev time is spent on the IRC channels, and he's usually around to help and answer questions.
Once I can get my Clean Kernel working with this, I'll be stoked... I have had a tough time dealing with patches thus far, I usually git cherry-pick and/or manually edit, so I need to figure out how to use the patches correctly.
Anyways, gotta go to work now (I'm working 50+ hour weeks now, hence the time constraints), but hopefully I can get the time to get it into my kernel.
Thanks, mkasick!
Sent from my Samsung Epic4G
DRockstar said:
I have had a tough time dealing with patches thus far, I usually git cherry-pick and/or manually edit, so I need to figure out how to use the patches correctly.
Click to expand...
Click to collapse
What environment (OS, etc.) are you using? Is the "patch" utility working for you?
The patches are split up based on functionality. In each patch directory there's a "series" file that lists the order they should be applied. There's a program, quilt that can help manage them but it's not necessary. If you're running a bourne shell (e.g., bash) in the "Kernel" directory of the kernel sources, you should be able to apply the patches with:
Code:
while read i; do patch -p 1 < "/path/to/kexec_patches/kernel-EC05/$i"; done < "/path/to/kexec_patches/kernel-EC05/series"
Whether they'll apply cleanly or not is a different story, but that's the general idea.
And yeah, time ....
Thank you mkasick, that's a great explanation, I think I can handle that, much appreciated!
For the record, I compile by ssh into dev boxes donated for dev use. They all run linux in different distros. I find this most convenient since I can do most everything from the command line using your brilliant connectbot for epic
Sent from my Samsung Epic4G
With those recovery scripts, doesn't Clockwork Mod have to have kexec set up?
ugothakd said:
With those recovery scripts, doesn't Clockwork Mod have to have kexec set up?
Click to expand...
Click to collapse
You mean for boot_zImage_recovery.zip to work?
The CWM kernel doesn't need full kexec support in order to be booted via kexec. But it does need the copy_atags patch in order to respect the "bootmode=3" kernel argument.
Actually, you can take any existing Epic kernel and somewhat-easily fix it to be bootable via kexec. Steps are:
1. Extract EC05 kernel sources. Or use the GB sources, it doesn't matter, it doesn't even have to match the version of the kernel you're fixing.
2. Apply "decomp_cachebufram" and "decomp_copy_atags" patches.
3. Build a kernel. Config options don't matter much since this kernel is going to be thrown away.
4. Find the zImage for the kernel you want to fix. Run:
Code:
skip=`grep -Fabom 1 $'\x1f\x8b\x08' zImage | head -n 1 | cut -d : -f 1`
dd if=zImage bs=1 skip="$skip" | gunzip > Image
cp Image arch/arm/boot/Image
which extracts the decompressed kernel payload from the zImage, and replaces the "Image" that was previously built with the one you've extracted.
5. Run "make" in the kernel source directory again. You might have to append a "CROSS_COMPILE=" path to match the one used in a build script. The output should be:
Code:
CHK include/linux/version.h
make[1]: `include/asm-arm/mach-types.h' is up to date.
CHK include/linux/utsrelease.h
SYMLINK include/asm -> include/asm-arm
CALL scripts/checksyscalls.sh
CHK include/linux/compile.h
Kernel: arch/arm/boot/Image is ready
GZIP arch/arm/boot/compressed/piggy.gz
AS arch/arm/boot/compressed/piggy.o
LD arch/arm/boot/compressed/vmlinux
OBJCOPY arch/arm/boot/zImage
Kernel: arch/arm/boot/zImage is ready
Building modules, stage 2.
MODPOST 13 modules
which shows that the build process took the existing, extracted Image, compressed it, and attached a new kexec-compatible decompressor to it.
The resulting "arch/arm/boot/zImage" can be kexec'd, and command line arguments should be respected, e.g., if you want to boot into CWM recovery.

[DEV] Multiboot Linux on Infinity tf700 (project closed)

Developers thread for users general.
I will post here some external links and additional information.
GitHub tf700 Repository - place for config files and step-by-step manual to create you own kernel and rootfs
GOO.IM file place
Tablet PPA for Raring
Changed packages is placed in /root/deb directory.
Known problems: (nexus7 wiki, mattfischer blog post, nexus7 bugs)
Unity has some problems with performance and ram eating - this is place for optimizations.
In-device microSD really bad works.
WiFi disabling is fail bcmdhd kernel module.
vt1-only, if you try to switch to vt* (`chvt 2`) - your device is freezes and reboot.
To use unity you need nux-tools, libnux-3.8-0 and libnux-3.8-common with version 3.8.0-0ubuntu1nexus7.1 (this packages are hold)
Sometimes I can see really bad artifacts with fonts and background on the device screen (mostly if using chromium browser). Only reboot fixes it.
Progress list:
Test Linux boot {DONE}
SDCard rootfs {DONE}
Graphical boot{DONE}
Keyboard special keys remapping (Esc, F1-12, Ins, Print, Break, Del, Home->Alt, Search->Meta4) {DONE in 0.8.0}
WiFi {DONE}
OpenGL ES {DONE}
Audio {DONE} In pavucontrol as output device selected Analog Stereo Output, in alsamixer (tegra-codec) unmute IntSpk
Video up to 1080p {DONE} (ac100 info) - Soft audio requires gstreamer0.10-plugins-*
nvgstplayer --sas="audioconvert ! pulsesink" -i <videofile> - Fullscreen mode
nvgstplayer --svs="nvxvimagesink" --sas="audioconvert ! pulsesink" -i <videofile> - Window mode
Touchscreen {DONE in 0.7.0} - used mtev one-touch driver 0.1.13 with api and 2button patches - right click by push one finger and click by second finger (thanx, cb22)
Touchpad {DONE in 0.6.1}
2 fingers scrolling {DONE}
3rd mouse button by 2 finger tap {DONE 0.6.1} - created new version of package multitouch "-swaptaps"
Updated tegra3 drivers and codecs to 16.2 {DONE in 0.6.1}
Ubuntu/Android dualboot {DONE in 0.7.0}
Initrd bootloader trying to boot sda1(dock sd cardreader or usb device), mmcblk1p1(internal microsd cardreader), sdb1 (dock sd cardreader or usb device), mmcblk0p9(inernal device), /data/media/tf700-rootfs-linux.img(in-device installed virtual disk) (0.7.0)
If it can't load linux - fallback to Android (0.7.0)
Boot android if voldown (or special, like Up key) key pressed in menu (0.7.0)
Fixed nvavp problem in android (0.7.0)
Fixed problems with Android sleeping by unbinding vtconsole before Android boot (0.7.0)
Initrd installer to mmcblk0p8 user partition and mount as loop with binding mmcblk0p8 {DONE in 0.7.0}
Fonts and cursor size {DONE in 0.8.0}
ZIP installer by Aroma {partially}
Install of boot image {DONE in 0.7.1}
Install script for SDcard-way and Virtual Disk-way {DONE in 0.8.0}
Possibility of using mmcblk0p8 /data as /home {DONE in 0.8.0}
Dynamical making of boot.blob {DONE in 0.8.1}
Select rootfs to boot {DONE in 0.8.1}
CM10.1 initrd (link) {DONE in 0.8.1}
Android boot from sdcard or virtual drive {DONE in 0.8.1}
UbuntuTouch initrd {DONE in 0.8.2}
Change boot system names {DONE in 0.8.2}
Add option to boot android by default {DONE in 0.8.2}
Check md5 of rootfs archive
Encryption for linux partition
FSCK check & fix rootfs before mounting {DONE in 0.8.2}
GPIO keys {partially in 0.8.0}
Switch rootfs to 13.4 (link) {partially}
Bluetooth
Try this: /system/bin/brcm_patchram_plus --bd_addr `cat /etc/bluetooth/bt_addr` --enable_hci --enable_lpm --no2bytes --tosleep 50000 --baudrate 4000000 --use_baudrate_for_download --patchram /lib/firmware/bcm4334.hcd --i2s=1,0,0,0 /dev/ttySAC0&
Totem and nvgst modules
Go to Wayland+Weston+libhybris to use egl android drivers
Disable speaker if headphones connected
Additional:
Ubuntu Cube Desktop {DONE in 0.6.2}
Chromium browser with egl and ffmpeg support {partially} - Youtube has problems with performance
Games & software {partially}
Duke3D {DONE}
Minecraft {partially}:
+ MCP
+ LWJGL 2.8.x (`ant jars_es && ant compile_native_es`)
+ Hands
Games and Emu (in Russian)
Xonotic
C-Dogs SDL
pcsx-rearmed (pi) (Return Fire and other good ps1 games)
Open Clonk
OpenLieroX
Blender + LuxRender
Need help:
Suspend to RAM - Not working with X (trace), without X (stop lightdm) - suspended, but not wake.
Wakelock to emmc
Wake up: echo "on" > /sys/power/state or powerbutton (maybe with kernel patching)
Totem - now is not working
gstreamer-properties and set Audio->Output=Custom, Audio->Output->Pipeline="nv_omx_audiosink" and Video->Output=Custom, Video->Output->Pipeline="nvxvimagesink"
HDMI copy of screen (any ideas?)
Xorg configuration shows blue lines on HDMI screen
Not working properly with 1920x1080: `xrandr --output LVDS-1 --auto --output HDMI-1 --mode 1920x1080` - I get "xrandr: Configure crtc 1 failed"
Tested on different display with fullhd support - seems like tegra3 drivers problem
Works ok with 1280x800:
xrandr --newmode `gtf 1280 800 60 | tail -n2 | head -n1 | sed 's/ Modeline //'`
xrandr --addmode HDMI-1 1280x800_60.00
xrandr --output LVDS-1 --auto --output HDMI-1 --auto
HDMI audio (any ideas?)
Adobe Flash player (any ideas?)
Skype (any ideas?)
List of optimizations:
ZRam {DONE}
UKSM (Ultra Kernel Samepage Merging) {DONE} (info in Russian)
CPU optimizations {partially}
Clemsyn OC 1.3 - 1.8ghz 650GPU Kernel {DONE in 0.6.2} - seems like not properly working on AndroidRoot hacked bootloader
Boot optimizations {partially}
Initrd scripts {DONE in 0.6.2}
Kernel modules upgrade from initrd {DONE in 0.7.1}
IO optimizations {partially}
Some optimizations of filesystem mounting {partially in 0.6.2}
Install to device main emmc memory {DONE in 0.7.0}
Power optimizations:
Screen off on lid
RAM Sleep
Powersave, Auto and Performance modes
Plans for the future:
Prepare common installer for any tegra3 device.
Test builds:
Nope
If you can help in development - please, write here.
This is very nice! Its certainly a good start.
There are definitely changes between your implementation and Jay's build. It would seem that after reviewing your source code that the major difference is your overall system config and choice of location of rootfs.
The kernels aren't too too different.
you are using noop vs cfq which is understandable since you are using the stock kernel vs CM10
you incorporated less debugging vs debugging (agree with your preference)
you incorporated framebuffer vs no fb
you incorporated zram vs no zram (smart move to help chromium)
your enhancements are much better IMHO.
You are not utilizing the linux for Tegra drivers. I think we could benefit by utilizing the latest version at least for sound. After reviewing the documentation and reviewing the drivers themselves I think we should integrate. That is unless you are trying to have two separate kernels instead of a monolithic kernel that can boot android and linux kind of like "Ubuntu for Android"
Since I have a working nvflash'd tf700 I am working on a dualboot kexec.
I still prefer the monolithic kernel approach for Android and Linux concept though, and make selection during boot as to which environment to go to. Essentially, it is possible to boot the kernel and run a specific environment and end that environment and switch to another environment.
As others have suggested I think we should integrate both into 1 tree and also try to get the tf300 on board because other than their kernel, specific tf700 configs/rules the rest of the rootfs and other portions should be identical.
Sent from my ASUS Transformer Pad TF700T using xda app-developers app
quicknik said:
You are not utilizing the linux for Tegra drivers. I think we could benefit by utilizing the latest version at least for sound. After reviewing the documentation and reviewing the drivers themselves I think we should integrate. That is unless you are trying to have two separate kernels instead of a monolithic kernel that can boot android and linux kind of like "Ubuntu for Android"
Click to expand...
Click to collapse
You mean - HW sound? I have integrated drivers, because I use modified nexus7 rootfs. Maybe, I wrong...
Also, integration of kernels is too difficult task for me now...
quicknik said:
Since I have a working nvflash'd tf700 I am working on a dualboot kexec.
I still prefer the monolithic kernel approach for Android and Linux concept though, and make selection during boot as to which environment to go to. Essentially, it is possible to boot the kernel and run a specific environment and end that environment and switch to another environment.
Click to expand...
Click to collapse
I also have nvflash by wheele, but for users preparing device for this - is too difficult. Now I already prepared dualboot with same kernel through initrd menu. In 0.6.0 I will release it. I have some problems with integrated cameras, but wifi is now works in android.
I think we have some problems with non-JB androids with this dualboot... But it is simple.
quicknik said:
As others have suggested I think we should integrate both into 1 tree and also try to get the tf300 on board because other than their kernel, specific tf700 configs/rules the rest of the rootfs and other portions should be identical.
Click to expand...
Click to collapse
Applying to tf300 - is good idea. It's a part of integration all tegra3 devices in same Ubuntu installation for pads.
Sorry, guys. I found my mistake with no-dualboot initrd. Now i replaced it to true dualboot (0.6.1).
rabits said:
Developers thread for users general.
Test builds:
boot.img dualboot initrd Pre-release 0.6.1
for me dualboot nice works, but I need to change verbosity of kernel output and boot menu more user frendly. If you can try it and write your suggestions - that will be cool.
assembly of mini initrd and android JB 4.1.1 (I have CleanROM 2.4 installed on my tf700t).
wifi on android is supported (added p4p bcmdhd option), but nvavp can't load fw.
boot menu (included linux, android, initrd shell) is showing after kernel loading.
Click to expand...
Click to collapse
I am more than willing to try, but how can I dualboot that first build ? If you provide a few step by step instructions, I am sure a lot of people will try which will help the development by giving several feedbacks.
I am currently on Clean Rom Inheritance (= CROMI) 2.7.2 which is the latest update in the Clean Rom series. Since you are using 2.4, I guess the steps woul be exactly the same as for you. I am however using Clemsyn kernel. Is the stock kernel required to be able to dual boot ?
One the OP, Ubuntu seems tobe pretty stable since a lot of features ar working. Is that really the case ? Is compiz already something I could consider using at this point of the developpment or is it still a little bit early ?
I am really interested in this project and I thank you a million time for starting actively a development allowing us to dualboot Ubuntu. Keep up you awesome work !!!
singoutout said:
I am more than willing to try, but how can I dualboot that first build ? If you provide a few step by step instructions, I am sure a lot of people will try which will help the development by giving several feedbacks.
I am currently on Clean Rom Inheritance (= CROMI) 2.7.2 which is the latest update in the Clean Rom series. Since you are using 2.4, I guess the steps woul be exactly the same as for you. I am however using Clemsyn kernel. Is the stock kernel required to be able to dual boot ?
One the OP, Ubuntu seems tobe pretty stable since a lot of features ar working. Is that really the case ? Is compiz already something I could consider using at this point of the developpment or is it still a little bit early ?
I am really interested in this project and I thank you a million time for starting actively a development allowing us to dualboot Ubuntu. Keep up you awesome work !!!
Click to expand...
Click to collapse
Thanks for your support)) I think, you could use users general thread for test boot steps. The steps are the same, but with the current rootfs (0.5.0) linux in dualboot may not start. Android with CleanRom should work. Soon I will release a rootfs 0.6, which can be used with dualboot section.
rabits said:
Thanks for your support)) I think, you could use users general thread for test boot steps. The steps are the same, but with the current rootfs (0.5.0) linux in dualboot may not start. Android with CleanRom should work. Soon I will release a rootfs 0.6, which can be used with dualboot section.
Click to expand...
Click to collapse
can do for TF300 ?
tailormoon said:
can do for TF300 ?
Click to expand...
Click to collapse
I don't know - but you can try.
Hi
How is it going with the developpment? Is the dualboot working nice with Ubuntu now?
Do you think a cube desktop will ever be usable on a dualbooted Ubuntu on our device?
Thanks for the good work
Hello, I have managed to get this booting on my tf300t tablet. It is working alright and I would like to learn a bit about this area of development so I can tweak it to get it working as well as contribute to the project as a whole. So far it has bugs with wifi, bluetooth, and sound. Also, when I select shutdown from the ubuntu menu, it corrupts the image and it will boot to lightdm and then freeze. I tried compiling a kernel for it based on a tweaked tf700t 10.4.4.20 kernel that was patched by untermensch to work for the tf300t but it did not solve any issues, it pretty much performed the same. I wanted infrom everyone of the issues on the tf300t as well as ask for some guidance as to documentation for what steps I can take to fix these issues. Thanks.
keeganmccallum said:
I wanted infrom everyone of the issues on the tf300t as well as ask for some guidance as to documentation for what steps I can take to fix these issues. Thanks.
Click to expand...
Click to collapse
It seems that this is the rootfs problem. Maybe you find some info in tf300 forum or ubuntu forums, but you need try to read log files and, maybe, do hard gdb trace.
Trying it when i get home
Thanks
Sent from my GT-N7000 using xda premium
BTW happy to have CROMI involved with this
rabits said:
[*]boot.blob v0.6.2 - Anyone can try to flash it? I can't flash it by fastboot on AndroidRoot bootloader - maybe it should work on JB bootloader?
Click to expand...
Click to collapse
Your dummy signblob header is one byte too long - there is a 0a byte before "MSM-RADIO-UPDATE" that should not be there.
_that said:
Your dummy signblob header is one byte too long - there is a 0a byte before "MSM-RADIO-UPDATE" that should not be there.
Click to expand...
Click to collapse
Thanx, I missed this byte)) Damn sed. We should always use echo and cat))
Blob is updated.
rabits said:
Blob is updated.
Click to expand...
Click to collapse
Successfully flashed via fastboot and it booted my Android (still the old CleanROM 2.3) fine. The initrd menu and framebuffer console is awesome. Can't try your rootfs right now because my PC cardreader is making trouble (I hate SD cards and readers, they are unreliable sh**, or they hate me).
Only everything is very tiny (160 dpi instead of 240), and adding ro.sf.lcd_density=240 to /system/build.prop did not help. I'll have to add it to the initrd and see if it helps. Strange, because I thought newer CleanROMs also set the dpi via /system/build.prop, but who knows. Eventually I should install CRI 3.0 anyway.
Hm, while I was writing this, the TF700 spontanously rebooted... looks like problems turning off the screen. /proc/last_kmsg contained two WARNINGs with stack trace, both containing do_blank_screen (drivers/tty/vt/vt.c:3728 and vt.c:650)
I just read that this is Clemsyn's kernel - where did you find the sources for the current version and what did you modify? There are so many different binaries in that thread and so few source drops that I totally lost track.
Hi
I've just seen the cube desktop is know supported on 0.6.2. How is it performing ? Is the latest version smoother than 0.5 ?
Thanks for the great work!!! I hope our tabs will soon have a stable and smooth Ubuntu dualbootable with CROMI
_that said:
Only everything is very tiny (160 dpi instead of 240), and adding ro.sf.lcd_density=240 to /system/build.prop did not help. I'll have to add it to the initrd and see if it helps. Strange, because I thought newer CleanROMs also set the dpi via /system/build.prop, but who knows. Eventually I should install CRI 3.0 anyway.
Hm, while I was writing this, the TF700 spontanously rebooted... looks like problems turning off the screen. /proc/last_kmsg contained two WARNINGs with stack trace, both containing do_blank_screen (drivers/tty/vt/vt.c:3728 and vt.c:650)
Click to expand...
Click to collapse
Yeah, seems like too old CR version...
_that said:
I just read that this is Clemsyn's kernel - where did you find the sources for the current version and what did you modify? There are so many different binaries in that thread and so few source drops that I totally lost track.
Click to expand...
Click to collapse
You can find info about kernel here and here. I'm used this source from second link to build 0.6.2 kernel.
singoutout said:
Hi
I've just seen the cube desktop is know supported on 0.6.2. How is it performing ? Is the latest version smoother than 0.5 ?
Click to expand...
Click to collapse
I just installed extra plugins))) Currently Nexus7 is more smoothed then tf700 with unity... Cube is rotating ok, but with IO lags - sd speed so slow.
Currently I working on more basic things, like install linux in main flash drive. If you have any ideas - please, post it here.
Hi everyone,
I've been working on getting ArchLinuxArm running on the TF300 over at http://forum.xda-developers.com/showthread.php?t=1918849
Just something that might help with your touchscreen - you should be able to get basic functionality if you use the xf86-input-mtev driver (see https://aur.archlinux.org/packages/xf86-input-mtev-meego/ )
While less than ideal, it's better than nothing. We have the same issue with X segfaulting when the evdev driver is used. I actually looked into that, and it has to do with the way events are reported by the kernel driver, if I remember correctly.

Sensorhub and Note 2 recovery maintainers

Please compile, if possible, your embedded recovery kernels without the sensorhub defconfig options.
CONFIG_SENSORS_SSP=y
CONFIG_SENSORS_SYSFS=y
CONFIG_SENSORS_SSP_ACCELEROMETER_POSITION=7
CONFIG_SENSORS_SSP_GYROSCOPE_POSITION=7
CONFIG_SENSORS_SSP_MAGNETOMETER_POSITION=7
CONFIG_SENSORS_SSP_LSM330=y
CONFIG_SENSORS_SSP_CM36651=y
CONFIG_SENSORS_SSP_AK8963C=y
CONFIG_SENSORS_SSP_BMP182=y
CONFIG_SENSORS_SSP_AT32UC3L0128=y
CONFIG_SENSORS_SSP_SENSORHUB=y
The kernel flashes over the sensorhub firmware on every single entry of recovery, and rebooting into the normal kernel, if the embedded kernel firmware mismatches the live hardware firmware. I consider this dangerous because firstly I don't know what happens if a firmware flash fails on boot, and secondly, the whole procedure is done over the I2C bus and takes about 22 seconds, increasing the boot time (and recovery entry) dramatically. The firmware changes relatively often and we have like 4 different versions out there in the wild at this moment and they will surely increase.
Off-topic: The sensorhub is a new dedicated micro-controller chip found on the Note 2 which handles all device sensors, instead of them being handled by the main CPU itself. The point of the thing is to offload that work from the CPU to vastly improve battery life.
Thank you a lot for the feedback and input about this issue
When compiling recoveries, we get the binary (recovery file) and the kernel. Sorry if I seem noob here, but I do not compile kernels, I am only used to cwm source. And in the recovery binary sources, there is no sensors flashed, it is the kernel that is repacked with it.
Now, if I take a recovery.img as it is outputted when compiled from cm10 sources, that is packed with a cm10 kernel, the recovery will boot without a delay.
However, that will break exfat support since we cannot insmod the external modules
So, the only choice is to repack the recovery ramdisk with a stock Samsung kernel, and that's what I do in my recoveries. However, this seems to induce the boot delay for people using custom kernels built around some sources (redpill, Perseus)
These recoveries repacked with a Samsung kernel will run fine along stock kernels and Note2core custom kernel (also a 4.1.2 source).
One of the potential causes is this part of code I believe (have no Note 2 to debug it)
drivers/sensor/ak8963.c
Code:
if (retry_count < 5) {
retry_count++;
pr_warn("############################################");
pr_warn("%s, retry_count=%d\n", __func__, retry_count);
pr_warn("############################################");
goto retry;
} else {
There is a check routine repeated 5 times, and on each repeat count a goto loop. The retry loop restarts much above in the code
retry:
Code:
#ifdef FACTORY_TESTstatic int ak8963c_selftest(struct akm8963_data *ak_data, int *sf){
.
.
.
retry:
/* read device info */
i2c_smbus_read_i2c_block_data(ak_data->this_client,
AK8963_REG_WIA, 2, buf);
pr_info("%s: device id = 0x%x, info = 0x%x\n",
__func__, buf[0], buf[1]);
/* set ATSC self test bit to 1 */
i2c_smbus_write_byte_data(ak_data->this_client,
AK8963_REG_ASTC, 0x40);
/* start self test */
i2c_smbus_write_byte_data(ak_data->this_client,
AK8963_REG_CNTL1,
AK8963_CNTL1_SELF_TEST);
/* wait for data ready */
while (1) {
msleep(20);
if (i2c_smbus_read_byte_data(ak_data->this_client,
AK8963_REG_ST1) == 1) {
break;
}
}
i2c_smbus_read_i2c_block_data(ak_data->this_client,
AK8963_REG_HXL, sizeof(buf), buf);
/* set ATSC self test bit to 0 */
i2c_smbus_write_byte_data(ak_data->this_client,
AK8963_REG_ASTC, 0x00);
x = buf[0] | (buf[1] << 8);
y = buf[2] | (buf[3] << 8);
z = buf[4] | (buf[5] << 8);
/* Hadj = (H*(Asa+128))/256 */
x = (x*(ak_data->asa[0] + 128)) >> 8;
y = (y*(ak_data->asa[1] + 128)) >> 8;
z = (z*(ak_data->asa[2] + 128)) >> 8;
pr_info("%s: self test x = %d, y = %d, z = %d\n",
__func__, x, y, z);
if ((x >= -200) && (x <= 200))
pr_info("%s: x passed self test, expect -200<=x<=200\n",
__func__);
else
pr_info("%s: x failed self test, expect -200<=x<=200\n",
__func__);
if ((y >= -200) && (y <= 200))
pr_info("%s: y passed self test, expect -200<=y<=200\n",
__func__);
else
pr_info("%s: y failed self test, expect -200<=y<=200\n",
__func__);
if ((z >= -3200) && (z <= -800))
pr_info("%s: z passed self test, expect -3200<=z<=-800\n",
__func__);
else
pr_info("%s: z failed self test, expect -3200<=z<=-800\n",
__func__);
sf[0] = x;
sf[1] = y;
sf[2] = z;
if (((x >= -200) && (x <= 200)) &&
((y >= -200) && (y <= 200)) &&
((z >= -3200) && (z <= -800))) {
pr_info("%s, Selftest is successful.\n", __func__);
return 1;
} else {
if (retry_count < 5) {
retry_count++;
pr_warn("############################################");
pr_warn("%s, retry_count=%d\n", __func__, retry_count);
pr_warn("############################################");
goto retry;
}
These are many retries using a non efficient goto loop.
Basically, here's the current possibilities I see:
- if we repack the recovery with your kernel or redpill, people will get delay issues on stock ROMs/Kernels
- if we use cm10 kernel: no delays but we loose exfat support
- if we use note2core kernel we'll probably loose exfat support
- if I recompile kernel from samsung sources without the sensors, it seems it will also break exfat
So, at the end I do not see a good choice that will satisfy every one. Either I wait for Samsung to release their sources so that you fix the kernel or I repack with 2 kernels: Samsung stock and redpill, so people can chose
Hope I am not getting it all wrong, but that's how I understand it
All that code is totally irrelevant and has nothing to do with the issue. I also don't understand what you want to say about that loop? Goto is inefficient? Nonsense.
The firmware flash and logic happens in /drivers/sensorhub/ssp_firmware.c and its just a few lines of code. The whole flash process is logged in kmsg at boot so you can just retrieve that and see for yourself.
And you're missing the point, as long as you embed ANY kernel with the sensorhub drivers, they will flash it. There are stock kernels out there with versions 91100, 92600, 92800, 102600 (just from the top of my head, might differ). If you use any recovery kernel whose version mismatches the boot.img kernel firmware, you will get the issue.
And to be honest, I don't understand what the fuss is about fixing it, TWRP includes now a kernel with exFat and removed sensor drivers. You just have to do the same.
Phil3759 said:
Either I wait for Samsung to release their sources so that you fix the kernel
Click to expand...
Click to collapse
There is nothing to fix from the live kernel side, I hope you understand that...
AndreiLux said:
All that code is totally irrelevant and has nothing to do with the issue. I also don't understand what you want to say about that loop? Goto is inefficient? Nonsense.
The firmware flash and logic happens in /drivers/sensorhub/ssp_firmware.c and its just a few lines of code. The whole flash process is logged in kmsg at boot so you can just retrieve that and see for yourself.
And you're missing the point, as long as you embed ANY kernel with the sensorhub drivers, they will flash it. There are stock kernels out there with versions 91100, 92600, 92800, 102600 (just from the top of my head, might differ). If you use any recovery kernel whose version mismatches the boot.img kernel firmware, you will get the issue.
And to be honest, I don't understand what the fuss is about fixing it, TWRP includes now a kernel with exFat and removed sensor drivers. You just have to do the same.
There is nothing to fix from the live kernel side, I hope you understand that...
Click to expand...
Click to collapse
AndreiLux said:
Sorry but you're a bit out of bound here with accusing kernel developers and doing such claims about the source of the issue while you seem pretty ignorant about the technical aspects of the problem.
As I said and explained in the thread you linked, the problem lies with the recovery and not the boot kernel. You're the one who will have to adapt your embedded kernel that you include here.
Click to expand...
Click to collapse
You also seem a bit ignorant about recoveries
TWRP doesn't included any custom kernel with exfat support. It comes with cm9 kernel and maybe now cm10.1 since they moved sources to 4.2 recently. Their source is just the android/bootable/recovery part built around cyanogenmod source. CM kernel, as I said in my answer, doesn't flash the sensors that's why there is no delay. That's the only reason why twrp won't have the delay. I can also include cm10 kernel and no more delays, but say good bye to exfat.
TWRP includes native exfat support where as CM and AOKP choose to not include it in their source (thus cwm) because it is not legal (MS patent). Only thing cwm devs can do:
- import twrp source for exfat support and break the MS patent
- use Samsung genuine kernel to get exfat support
So, not an easy decision / move as you suggest
Phil3759 said:
TWRP doesn't included any custom kernel with exfat support. It comes with cm9 kernel and maybe now cm10.1 since they moved sources to 4.2 recently. Their source is just the android/bootable/recovery part built around cyanogenmod source. CM kernel, as I said in my answer, doesn't flash the sensors that's why there is no delay. That's the only reason why twrp won't have the delay. I can also include cm10 kernel and no more delays, but say good bye to exfat.
TWRP includes native exfat support where as CM and AOKP choose to not include it in their source (thus cwm) because it is not legal (MS patent). Only thing cwm devs can do:
- import twrp source for exfat support and break the MS patent
- use Samsung genuine kernel to get exfat support
So, not an easy decision / move as you suggest
Click to expand...
Click to collapse
Sorry but almost everything you said its wrong.
TWRP includes a modified CM kernel with added exFat and since I've made Bigbiff aware, also removes the sensorhub drivers.
CM kernel, as I said in my answer, doesn't flash the sensors that's why there is no delay.
Click to expand...
Click to collapse
The CM kernel is based on the Samsung sources and has the flash logic intact, because it's obviously needed in the OS to even have functioning sensors. It's not flashing in your case because you have matching firmwares, and that's all.
Sorry but I suggest you inform yourself here a bit more, I've explained it pretty clearly yet you seem to be ranting about things which are just not correct.
delete

make kexec guestable kernels

hi all,
i'm going to support multiple android roms loading in my kernel_chooser + root_chooser project.
in few words it will be a powerful bootloader for android.
this is what it will be able to do ( many points are yet working ):
kernel loading thought kexec
boot from external devices
boot from subfolders
custom background
change android /sytem partition
change android /data partition
wipe android /cache partition
what i'm asking to you it's to make your android rom's kernel kexec-ready, applying them a kexec guest patch.
thus to make them ready to load for me.
if not i have to patch your kernel every time you modify it.
kernel_chooser and root_chooser are hosted here: https://github.com/tux-mind/tf201-dev
they are made for the asus transformer prime ( TF201 ), but they can run on any android device with your help.
i will add you to the github collaborators if you want to help.
now we are working on multiple android roms support.
thanks in advance for your time.
-- tux_mind
@tux_mind sounds like an interesting idea. So this works for all device's kernels? Once I apply the patch to my kernel source, what happens after that? I'll make sure to follow your progress, good work
HTCDreamOn said:
@tux_mind sounds like an interesting idea. So this works for all device's kernels? Once I apply the patch to my kernel source, what happens after that? I'll make sure to follow your progress, good work
Click to expand...
Click to collapse
thanks
yes, this should work for all devices, except for a little tuning of the partition with the configuration data ( /data ).
i have to make it to self-detect the /data partition.
let's say for example that you want to use it on your HTC Vision.
i have to build an host kernel by the stock one applying the host kexec patch.
than i have to build an android boot image which contains kernel_chooser as initrd and the above kernel.
this android boot image will be written to your current one though fastboot.
after that kernel_chooser will be able to load any kernel patched with the guest patch.
obviously the loaded kernel must be made for that device
it can also load a custom initrd and use a custom kernel CMDLINE.
so, after i made a HTC Vision kernel_chooser, your rom it's ready to load if you applied the guest patch to you kernel.
i can't explain well how to make you rom "bootable" because we are developing this
but if your kernel is kexec-loadable it will be supported by kernel_chooser.
i will update you in the next days
bye!
Really great idea! As it support other devices I can throw in my kernel which is a kexec one for the Motorola RAZR, because of our locked bootloader. The question is: how different are the methods to use kexec?
M.o.t.o.r.o.l.a.R.a.z.r - JBX-Kernel 0.5a - Tapatalk4
@tux_mind this'll sound really stupid but how do actually patch our kernels for this? Do I have to build kexec from here or something?
dtrail1 said:
how different are the methods to use kexec?
Click to expand...
Click to collapse
kexec it's a syscall, so it's the same on every arm device.
HTCDreamOn said:
@tux_mind this'll sound really stupid but how do actually patch our kernels for this? Do I have to build kexec from here or something?
Click to expand...
Click to collapse
there is a good explaination here:
http://forum.xda-developers.com/showthread.php?t=2104706
look at the "Compatibility patch".
for my tf201 the guest patch is this: http://git.lilstevie.geek.nz/?p=ubu...ch;h=54c2e480682afb0629f3854dfea4154f528421e5
which is almost the same...
i hope that almost all kernels have the same host/guest patch, in order to save us a lot of work.
the patch isn't need for kexec, but for hardboot kexec, thus to physically shutdown and restart the device with your kernel, from 0.
the standard kexec it's a assembly jump to 0 ( jmp 0x0 ) with the new kernel loaded in the .text section.
but the standard method don't reinitialize the devices and many other things that could rest in a undefined state.
btw, i have almost done my work.....i'm fighting the android udev which is overwriting my symlinks..
see you!
i got it!
my initial target was to remove devices created by ueventd and replace them with symlink to loop devices.
but android respawn ueventd and replaces my symlinks...
i tried to start the android ueventd, leave it running, and replace the /sbin/ueventd with a infinite sleep static program
but android dont' start at all..i can't even access via adb.
so, the "final" solution is to edit the /fstab.$hardware, which should be in any andoird boot image ( right ? ).
please feel free to suggest any other way to hack the mount process.
you can find the sources here: https://github.com/tux-mind/tf201-dev/tree/master/android_chooser
the program read the paths from kernel cmdline.
the syntax is that:
Code:
newandroid=blkdev:initrd_path:fstab_path
where
blkdev is the linux name of the blockdevice containing the next args ( e.g. /dev/mmcblk0p8 )
initrd_path is the path on the previous blockdevice of the android initrd ( gzipped or not )
fstab_path is the path on the previous blockdevice of the fstab file
the fstab file have this syntax:
Code:
/android/mountpoint /path/to/image/file
where
/android/mountpoint is the android mountpoint to overwrite ( e.g. /system )
/path/to/image/file is the path to the filesystem image file ( on blkdev ) ( e.g. /boot/unrooted.img )
i don't make any documentation until i will be sure that there is no better way to do this.
thanks in advance for your testing
ah, some other useful info.
because we are in testing the program write a log file with some debug info in the root of your blkdev.
so you will find /android_chooser.log on your blkdev with these info in case of errors.
tux_mind
Please
dtrail1 said:
Really great idea! As it support other devices I can throw in my kernel which is a kexec one for the Motorola RAZR, because of our locked bootloader. The question is: how different are the methods to use kexec?
M.o.t.o.r.o.l.a.R.a.z.r - JBX-Kernel 0.5a - Tapatalk4
Click to expand...
Click to collapse
Dtrail could you explain me kexec and its components required for loading new kernel because my device(electrify 2) is similar to droid razr. Using bmm kexec is boot able because I had checked by flashing droid razr's kernel which gave a boot loop.
I would be pleased and thankful to you if you help me.

Categories

Resources